Effect of chemical and enzymatic treatments of alfa fibers on polylactic acid bio-composites properties

Author:

Werchefani Mouna123ORCID,Lacoste Catherine2,Belguith Hafedh3,Gargouri Ali3,Bradai Chedly1

Affiliation:

1. Laboratoire des Systèmes Electromécaniques, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia

2. Laboratoire du Groupe de Recherche En Sciences Pour l’Ingénieur, Ecole Supérieure d’Ingénieurs de Reims, Université de Reims Champagne Ardennes, Reims, France

3. Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Sfax, Tunisia

Abstract

Poor interfacial adhesion between vegetable fibers and bio-based thermoplastics is recognized as a serious drawback for biocomposite materials. To be applicable for a large-scale production, one should consider appropriate methods of natural fiber handling. This study presented poly(lactic acid) (PLA) reinforced with Alfa short fibers and four types of fiber treatment were selected. The effect of these treatments on the tensile properties and the morphology of biocomposites was studied. Composite samples were produced using a twin-screw extruder and an injection molding machine with a fiber percentage of 20 wt %. Prior to composite manufacture, Alfa fibers were subjected to mechanical, chemical and enzymatic modifications. The comparison of enzyme treated fibers and NaOH treated fibers was investigated by means of biochemical and morphological analyses. It was observed that enzymes decompose lignin, pectin and hemicelluloses from the fiber bundles interface leading to the reduction of technical fiber diameter and length. The elimination of these hydrophilic components resulted also in an increase of the water resistance of treated fibers. A bigger fiber-matrix interface area was thus created, which facilitated fiber-matrix adhesion and enhanced mechanical characteristics of the composites. SEM micrographs showed homogeneous distribution of treated fibers in the polymer matrix. Tensile strength of PLA biocomposites filled with pectinase treated fibers was increased by 27% over untreated samples. The data proved that enzymatic treatment can be used as an effective and ecofriendly strategy of fiber modification for natural fiber-reinforced composite production. These materials can be used in several domains such as construction, automotive applications and packaging industries.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3