Simulation and validation of air flow and heat transfer in an autoclave process for definition of thermal boundary conditions during curing of composite parts

Author:

Bohne Tobias1,Frerich Tim2,Jendrny Jörg3,Jürgens Jan-Patrick4,Ploshikhin Vasily4

Affiliation:

1. Institute of Structural Analysis, Leibniz Universität Hannover, Hannover, Germany

2. Faserinstitut Bremen e. V., Germany

3. Airbus Operations GmbH, Bremen, Germany

4. Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes (ISEMP), University of Bremen, Bremen, Germany

Abstract

Aerospace carbon fibre-reinforced components are cured under high pressure (7 bar) and temperature in an autoclave. As in an industrial environment, the loading of an autoclave usually changes from cycle to cycle causing different thermal masses and airflow pattern which leads to an inhomogeneous temperature distribution inside the carbon fiber-reinforced plastic part. Finally, the overall process can be delayed and the part quality can be compromised. In this paper, the heat transfer in a small laboratory autoclave has been investigated using calorimeter measurements and a fluid dynamic model. A complex turbulent flow pattern with locally varying heat transfer coefficient has been observed. Especially, the pressure and the inlet fluid velocity have been identified as sensitive process parameters. Further finite element simulations with adjusted boundary conditions provide accurate results of the curing process inside of the components for selective process control. The heat transfer coefficient has been found to be almost stationary during the observed constant pressure autoclave process allowing a separated investigation of the heat transfer coefficient and the curing of the components. The presented method promises therefore a detailed observation of the autoclave process with reduced computational effort.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3