Prediction of shape distortions in thermosetting composite parts using neural network interfaced visco-elastic constitutive model

Author:

Balaji Aravind12ORCID,Sbarufatti Claudio2,Dumas David1,Parmentier Antoine1,Pierard Olivier1,Cadini Francesco2

Affiliation:

1. Cenaero Research Center, Gosselies, Belgium

2. Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

Abstract

The work aims to enhance the capabilities of a Finite Element tool, specifically related to a rheological thermo-chemo-viscoelastic constitutive model. This enhancement is intended to improve the tool’s ability to predict the distortions in composite parts caused by the polymerization of the thermoset composite matrix. These distortions occur due to internal residual stress generated by the inherent anisotropic properties of the thermoset composite material, including coefficients of thermal expansion and chemical shrinkage. The research work’s improvement is tied to the precise modelling of curing behaviour, which literature acknowledges as having a significant impact on manufacturing defects. In order to accommodate the influence of curing behaviour on various process variables—specifically, different thermal loading rates—a neural network model is implemented as an alternative to a standard diffusion cure-kinetics model. The neural network model is trained using Differential Scanning Calorimetry data and is integrated with the classical visco-elastic constitutive model to more accurately predict the progression of distinct thermoset resin states. This transition between cure states is assessed using two cure state variables: the degree of cure and the glass transition temperature. The enhanced predictions of state transitions lead to accurate assessments of internal residual stresses, especially when dealing with thick components subjected to thermal fluctuations. The anisotropic properties of thermoset composites, crucial for numerical analysis, are captured at various stages of cure. Ultimately, this methodology is employed to compare process-induced defects in the case study of the Z-shaped carbon/epoxy woven part, and the defects closely align with experimental measurements.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3