The effect of machining processes on the physical and surface characteristics of AA2024-B4C-SiC hybrid nanocomposites fabricated by hot pressing method

Author:

Çevik Zihni Alp1,Karabacak Abdullah Hasan2,Kök Metin3,Canakçı Aykut2ORCID,Kumar S Suresh4,Varol Temel2

Affiliation:

1. Besni Technical Vocational High School, Adıyaman University, Turkey

2. Department of Metallurgical and Materials Engineering, Engineering Faculty, Karadeniz Technical University, Turkey

3. Kahramanmaraş Technical Vocational High School, Kahramanmaraş Sütçü İmam University, Turkey

4. Faculty of Mechanical Engineering, Kalasalingam University, India

Abstract

In this study, an attempt was made on the AA2024 alloy based hybrid nanocomposites reinforced with different weight percentage of SiC and B4C particles to investigate their physical and machinability characteristics including surface morphology. The Material Removal Rate (MRR), Surface Roughness (SR) of the nanocomposites machined by various machining processes namely Abrasive Water Jet (AWJ) machining, Wire Electrical Discharge (WED) machining and Computer Numerical Controlled (CNC) turning processes were studied comparatively. The machined surface formed by the each machining process is examined and its surface quality was discussed for each hybrid nanocomposite. Results show that the hardness is increased to 101.6 BHN from 179.4 BHN, when 2 wt.% of B4C and SiC particles is added to AA2024 matrix. Observed from the results that the addition of 2 wt.% of B4C and SiC particles produces the highest porosity of 3.36% for nanocomposite samples. The experimental results revealed that the addition of particulates in to the matrix reduces the MRR and increases SR. MRR results showed that hybrid nanocomposites machined by AWJ technique has minimum MRR of 0.0221 mm3/min. The surface roughness of the nanocomposites machined with AWJ process was 3.2 µm and increased to 6.81 µm for the AA2024-B4C-SiC hybrid nanocomposites machined with CNC process.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3