Multi-scale modeling of thermal conductivity of SiC-reinforced aluminum metal matrix composite

Author:

Dong Xiangyang1,Shin Yung C1

Affiliation:

1. Center for Laser-Based Manufacturing, School of Mechanical Engineering, Purdue University, USA

Abstract

High thermal conductivity is one important factor in the selection or development of ceramics or composite materials. Predicting the thermal conductivity would be useful to the design and application of such materials. In this paper, a multi-scale model is developed to predict the effective thermal conductivity in SiC particle-reinforced aluminum metal matrix composite. A coupled two-temperature molecular dynamics model is used to calculate the thermal conductivity of the Al/SiC interface. The electronic effects on the interfacial thermal conductivity are studied. A homogenized finite element model with embedded thin interfacial elements is used to predict the properties of bulk materials, considering the microstructure. The effects of temperatures, SiC particle sizes, and volume fractions on the thermal conductivity are also studied. A good agreement is found between prediction results and experimental measurements. The successful prediction of thermal conductivity could help a better understanding and an improvement of thermal transport within composites and ceramics.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3