Stress—strain response and thermal conductivity degradation of ceramic matrix composite fiber tows in 0—90° uni-directional and woven composites

Author:

Tang C.1,Blacklock M.1,Hayhurst D.R.2

Affiliation:

1. Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, 88, Sackville Street, Manchester, M13 9PL, UK

2. Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, 88, Sackville Street, Manchester, M13 9PL, UK,

Abstract

The physical model for tow behavior, developed previously by the authors, is used to study the performance of two woven CMC laminates: a carbon fiber/carbon—SiC matrix (C/C—SiC) plain weave laminate — DLR-XT; and a carbon fiber— carbon matrix (C/C) 8-Harness Satin weave laminate — HITCO. For both materials, room temperature stress—strain curves and transverse thermal conductivity—strain curves are available from a previous experimental investigation; these curves have been used as benchmarks to assess the fidelity of the models. The tow model has first been used to develop relationships for 0°/90° uni-directional unit cells, and then adapted to cater for unit cells of the DLR-XT and HITCO woven composites. For both materials, acceptable predictions have been made of stress—strain behavior. Despite the thermal models being based on one-dimensional heat flow, within series-parallel elements, excellent predictions have been made of the degradation in transverse composite thermal conductivity with the composite strain. Furthermore, it has been confirmed that the effect of the degradation of transverse thermal conductivity is due to strain-driven growth of wake debonded cracks.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3