Hot-stamping technology for carbon fiber reinforced thermoplastic plates based on electrical resistance heating

Author:

Okayasu Mitsuhiro1ORCID,Sato Masaya1

Affiliation:

1. Graduate School of Natural Science and Technology, Okayama University, Japan

Abstract

In the present work, a hot-stamping system for carbon fiber reinforced thermoplastic (CFRTP) plates based on electrical resistance heating was developed, where CFRTP consisted of polyphenylene and polyacrylonitrile. With the hot-stamping process, a simple hat-shaped sample was made. The heating rate and maximum sample temperature varied depending on the electrical resistance of the CFRTP plate. Moreover, the contact conditions between the electrodes and the CFRTP plate also affected the sample temperature owing to their influence on the electrical resistance, which was determined by the amount of exposed carbon fiber (CF) on the sample surface. Temperature measurements performed using samples with various amounts of exposed CF (20%–95% CF) revealed that approximately 65% CF afforded the highest sample temperature and fastest heating rate. The CFRTP plate underwent non-uniform heating, especially during the early stages, e.g. less than 10 s. Sample heating to 150℃ resulted in permanent deformation of the hat-shaped CFRTP samples with less springback, whereas heating to higher temperatures above the melting point led to meandering of the samples. In contrast, CFRTP samples subjected to hot-stamping at lower temperatures, such as 110℃, exhibited rough surfaces. In addition to the sample temperature, the formability of CFRTP during hot-stamping was affected by the holding time. When hot-stamping was performed without a holding time, even at high temperatures of 150℃ and above, low-quality samples with dented surfaces and irregular sample thickness were obtained. The results of this study indicate that a temperature of 150℃ and a holding time of 10 s are optimal for fabricating high-quality hot-stamped CFRTP with smooth surfaces and uniform thickness.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3