Bearing fault diagnosis based on a new acoustic emission sensor technique

Author:

Van Hecke Brandon1,Qu Yongzhi2,He David1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA

2. The DEI Group, Millersville, MD, USA

Abstract

The diagnosis of bearing health by quantifying acoustic emission data has been an area of interest for recent years due to the numerous advantages over vibration-based techniques. However, most acoustic emission–based methodologies to date are data-driven technologies. This research takes a novel approach combining a heterodyne-based frequency reduction technique, time synchronous resampling, and spectral averaging to process acoustic emission signals and extract condition indicators for bearing fault diagnosis. The heterodyne technique allows the acoustic emission signal frequency to be shifted from several megahertz to less than 50 kHz, which is comparable to that of vibration-based techniques. Then, the digitized signal is band-pass filtered to retain the information associated with the bearing defects. Finally, the tachometer signal is used to time synchronously resample the acoustic emission data, allowing the computation of a spectral average which in turn enables the extraction and evaluation of condition indicators for bearing fault diagnosis. The presented technique is validated using the acoustic emission signals of seeded fault steel bearings on a bearing test rig. The result is an effective acoustic emission–based approach validated to diagnose all four fault types: inner race, outer race, ball, and cage.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3