MWO2KG and Echidna: Constructing and exploring knowledge graphs from maintenance data

Author:

Stewart Michael1ORCID,Hodkiewicz Melinda2ORCID,Liu Wei1,French Tim1

Affiliation:

1. Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia

2. Department of Engineering, The University of Western Australia, Perth, WA, Australia

Abstract

Unstructured technical texts are a rich resource of engineering knowledge underutilised for data analysis. Maintenance work orders (MWO), for example, capture valuable information to inform what work was done on an asset and why. Data in MWO short text fields is unstructured, terse and jargon-rich, complicating the ability of both humans and machines to read it. Our challenge is to efficiently extract technical information from the MWO short text field and combine it with data in structured fields such as dates, functional location, make and model of the asset. In this paper we present a technical language processing-based solution for this problem. Echidna is an intuitive query-enabling interface that visualises historic asset data in the form of a knowledge graph. This knowledge graph is produced by MWO2KG, which uses deep learning supported by annotated training data to automatically construct knowledge graphs from unstructured technical text combined with data from structured fields. The tools are tested on maintenance work order and delay accounting data provided by industry partners. These tools provide reliability engineers with an efficient way to find information in historic asset data for failure modes and effects analysis, maintenance strategy validation and process improvement work. Source code for both tools is available on GitHub under the Apache 2.0 License.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Reference44 articles.

1. Klyne G, Carroll JJ, McBride B. Resource description framework (rdf): concepts and abstract syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210 (2004, accessed September 2021).

2. Cyganiak R, Wood D, Lanthaler M, et al. RDF 1.1 concepts and abstract syntax. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225. (accessed September 2021)

3. Industry-scale Knowledge Graphs: Lessons and Challenges

4. Knowledge Representation and Reasoning

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3