Development of a Heart Rate Variability Prediction Equation Through Multiple Linear Regression Analysis Using Physical Characteristics and Heart Rate Variables

Author:

Kim Sung-Woo12ORCID,Park Hun-Young12ORCID,Jung Hoeryong3,Park Sin-Ae4,Lim Kiwon125

Affiliation:

1. Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea

2. Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea

3. Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea

4. Department of Systems Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Republic of Korea

5. Department of Physical Education, Konkuk University, Seoul, Republic of Korea

Abstract

Heart rate variability (HRV) is an effective tool for objectively evaluating physiological stress indices in psychological states. This study aimed to develop multiple linear regression equations to predict HRV variables using physical characteristics, body composition, and heart rate (HR) variables (eg, sex, age, height, weight, body mass index, fat-free mass, percent body fat, resting HR, maximal HR, and HR reserve) in Korean adults. Six hundred eighty adults (male, n = 236, female, n = 444) participated in this study. HRV variable estimation multiple linear regression equations were developed using a stepwise technique. The regression equation’s coefficient of determination for time-domain variables was significantly high (SDNN = adjusted R2: 73.6%, P < .001; RMSSD = adjusted R2: 84.0%, P < .001; NN50 = adjusted R2: 98.0%, P < .001; pNN50 = adjusted R2: 99.5%, P < .001). The coefficient of determination of the regression equation for the frequency-domain variables was high without VLF (TP = adjusted R2: 75.0%, P < .001; LF = adjusted R2: 77.6%, P < .001; VLF = adjusted R2: 30.1%, P < .001; HF = adjusted R2: 71.3%, P < .001). Healthcare professionals, researchers, and the general public can quickly evaluate their psychological conditions using the HRV variables prediction equation.

Funder

Rural Development Administration of Korea

Korea Creative Content Agency

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3