Hybrid broadband ground-motion simulation validation of small magnitude active shallow crustal earthquakes in New Zealand

Author:

Lee Robin L1,Bradley Brendon A1ORCID,Stafford Peter J2ORCID,Graves Robert W3,Rodriguez-Marek Adrian4ORCID

Affiliation:

1. Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

2. Department of Civil and Environmental Engineering, Imperial College London, London, UK

3. US Geological Survey, Pasadena, CA, USA

4. The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract

This article presents a comprehensive validation of the hybrid broadband ground-motion simulation approach (via the commonly used Graves and Pitarka method) in a New Zealand context with small magnitude point source ruptures using an extensive set of 5218 ground motions recorded at 212 sites from 479 active shallow crustal earthquakes across the country. Modifications to the simulation method inferred from a previous New Zealand validation are implemented, and the improvements are explicitly quantified. Empirical ground-motion models are also considered to provide a benchmark for simulation prediction accuracy and precision. Examination of intensity measure residuals identifies that the simulation method modifications lead to reduced model prediction bias and within-event variability and provides evidence toward the use of spatially varying coefficient models for simulation parameters, such as the high-frequency Brune stress parameter. Additional biases identified include, among others, underprediction of significant durations at soft soil sites and overprediction of short-period pseudo-spectral accelerations at stiff alluvial gravel and rock sites due to low-estimated 30 m time-averaged shear-wave velocity values.

Funder

university of canterbury

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3