A ground motion based procedure to identify the earthquakes that are the most relevant for probabilistic seismic hazard analysis

Author:

Anderson John G1ORCID,Cotton Fabrice23,Bindi Dino2ORCID

Affiliation:

1. Nevada Seismological Laboratory, University of Nevada, Reno, NV, USA

2. GFZ German Research Center for Geosciences, Potsdam, Germany

3. Institute of Geosciences, University of Potsdam, Potsdam, Germany

Abstract

A method is proposed to identify within seismic catalogs those earthquakes that are most relevant to the seismic hazard. The approach contrasts with the classical approach to decluster the seismic catalog with the expectation that the remaining main shocks will be the relevant events for the seismic hazard analysis. We apply a time window like in the window declustering approach of Gardner and Knopoff, but the time window is motivated by relevance to engineering. A ground motion criterion replaces the spatial window. An event in the time window is included in the “Maximum Shaking Earthquake Catalog (MSEQ catalog)” if the median ground motion at its epicenter exceeds the predicted median ground motion there from the main shock, using a locally appropriate ground motion prediction equation. Ground motion can be measured by any parameter that is estimated by a ground motion prediction equation. We consider peak acceleration and spectral amplitude (SA) at periods of 0.2, 1.0, and 3.0 s. The longer period parameters systematically remove more small events. The purpose is not to produce a declustered catalog, in which each group of physically related earthquakes is represented by its largest event. Statistical properties of the MSEQ catalog somewhat resemble the corresponding declustered catalog in three tested regions, but the MSEQ catalogs all retain more large-magnitude earthquakes. The MSEQ catalog may better represent the potential hazard in a region, and thus might be considered as an alternative to a declustered catalog in developing the seismicity model for probabilistic seismic hazard analysis.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3