Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China

Author:

Yang Yuhong1,Dogru Tarik2ORCID,Liang Chao1,Wang Jianqiong1,Xu Pengfei1

Affiliation:

1. Southwest Jiaotong University, China

2. Florida State University, USA

Abstract

Numerous methodologies have been offered to forecast tourism demand; however, accurate forecasting has been a major challenge for policymakers despite its critical importance for tourism planning. Therefore, we propose and test a novel forecasting methodology that combines principal component analysis (PCA) and long short-term memory (LSTM) network, along with the Baidu index, to forecast daily tourist arrivals for a popular tourist attraction in China. Word2Vec, a software tool launched by Google, is used to improve the coverage and accuracy of search keywords in the construction of the Baidu indexes. Before training the LSTM network, PCA is used to reduce noise and optimize the data. Considering the study’s timeframe, the impact of COVID-19 pandemic has also been assessed. The efficacy of the proposed forecasting methodology is verified, and the results show that the PCA-LSTM model outperforms other models in terms of prediction accuracy and stability. Theoretical and practical implications are discussed.

Funder

Sichuan Social Science Planning Project of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3