Affiliation:
1. Amirkabir University of Technology, Tehran, IRAN
Abstract
The aim of this paper was to predict the needle penetration force in denim fabrics based on sewing parameters by using the fuzzy logic (FL) model. Moreover, the performance of fuzzy logic model is compared with that of the artificial neural network (ANN) model. The needle penetration force was measured on the Instron tensile tester. In order to plan the fuzzy logic model, the sewing needle size, number of fabric layers and fabric weight were taken into account as input parameters. The output parameter is needle penetration force. In addition, the same parameters and data are used in artificial neural network model. The results indicate that the needle penetration force can be predicted in terms of sewing parameters by using the fuzzy logic model. The difference between performance of fuzzy logic and neural network models is not meaningful ( RFL=0.971 and RANN=0.982). It is concluded that soft computing models such as fuzzy logic and artificial neural network can be utilized to forecast the needle penetration force in denim fabrics. Using the fuzzy logic model for predicting the needle penetration force in denim fabrics can help the garment manufacturer to acquire better knowledge about the sewing process. As a result, the sewing process may be improved, and also the quality of denim apparel increased.
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献