Analysis of electrical and comfort properties of conductive knitted fabrics based on blending ratio of silver-coated yarns for smart clothing

Author:

Lee Suhyun1ORCID

Affiliation:

1. College of Human Ecology, Jeonbuk National University, Deokjin-gu, Jeonju, Republic of Korea

Abstract

In this study, the relationship between the functionality and comfort of conductive fabrics for smart clothing is investigated by examining changes in the mechanical, electrical, and comfort properties of knitted fabrics based on the blending ratio of conductive yarns. Hence, flat knitted fabrics of the same structure are manufactured using polyester and silver-coated polyamide yarns. Subsequently, their weight, thickness, tensile strength, tensile strain, bending rigidity, breathability, surface properties are measured, and their cool touch feeling, surface resistance, and electrical heating performance are evaluated. Because the strength and specific gravity of a silver-coated conductive yarn are high, with an increase in its blending ratio, its weight, tensile strength, and bending rigidity increase, whereas its strain decreases. In terms of the comfort properties, the air permeability increases as the blending ratio of the conductive yarn increases, because the pores on the surface of the knitted fabric are increased structurally owing to the conductive yarns. However, the water vapor transmission rate remains unchanged. Meanwhile, the surface roughness does not change significantly in the wale direction; however, it increases in the course direction as the blending ratio of the conductive yarn increases. The recoverability from compression decreases, and the work of compression increases as the blending ratio of the conductive yarn increases. This implies that the conductive fabric can be compressed easily but is less likely to recover from compression. Changes in the surface roughness and compression property show that the hand value of the knitted fabric is altered by the insertion of the conductive yarn. The electrical properties improved by increasing the blending ratio of the conductive yarns. In particular, even with only 33% insertion of conductive yarns, extremely good electrical properties are obtained, that is, low resistance, sensitive resistance change due to stretching, and heating of 48°C. Therefore, blending conventional and conductive yarns instead of using only conductive yarns improve comfort and wearability when applying conductive knitted fabrics to smart clothing.

Funder

National Research Foundation of Korea

Jeonbuk National University

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3