Affiliation:
1. Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
Abstract
The conductivity of textile fabrics is not only relevant for highly conductive textile materials, which can be prepared by coatings with fine metal layers or conductive polymers, but it is also of large interest in antistatic or other textiles which necessitate relatively low conductivities. These high resistances are usually in a range of gigaohms to teraohms which is not accessible by common multimeters, but necessitates special teraohmmeters. Although these measurement instruments are not unusual in the textile industry, their applications necessitate knowledge of the measurement principle and especially of the influence of environmental conditions on the measurement results. Here, temperature- and humidity-dependent measurements for temperatures of 20°C/23°C/27°C and relative humidities of 50%/65% with a teraohmmeter on different textile fabrics are shown. The results show not only the strong impact of the environmental conditions, resulting in resistance deviations of more than one order of magnitude, but also give hints on how these environmental conditions can be stabilized to a large amount to enable reliable comparison between different textile materials.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science