Affiliation:
1. Jiangnan University, Wuxi, Jiangsu, China
Abstract
Fabric image retrieval, a special case in Content Based Image Retrieval, has high potential application value in many fields. Compared with common image retrieval, fabric image retrieval has high requirements for results. To address the actual needs of the industry for Mélange fabric retrieval, we propose a novel framework for efficient and accurate fabric retrieval. We first introduce a quantified similarity definition, soft similarity, to measure the fine-grained pairwise similarity and design a CNN for fabric image representation. An objective function, which consists of three losses: soft similarity loss for preserving the similarity, cross-entropy loss for image representation, and quantization loss for controlling the quality of hash code, is used to drive the learning of the model. Experimental results demonstrate that the proposed method can not only achieve effective feature learning and hashing learning, but also effectively work on smaller datasets. Comparative experiments illustrate that the proposed method outperforms the compared methods.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献