A sustainable blend of Tencel/jute fibers as an alternative to cotton/polyester for clothing

Author:

Sarwar Zahid1,Ahmad Faheem1,Ahmad Adnan1,Ahmad Sheraz1ORCID

Affiliation:

1. School of Engineering and Technology, National Textile University, Faisalabad, Pakistan

Abstract

The increasing concern about the environment has enhanced the utilization of sustainable products in every field of life, from common household items to fabrics. Although cotton is a plant-based fiber, its cultivation requires large amounts of water and pesticides. Therefore, the future of product development demands environmental friendliness. To overcome the problems of cotton related to the environment, a novel sustainable fabric was developed by using Tencel and jute fiber for the apparel industry to reduce the usage of cotton. In this current study, six blended yarns of two counts (10 & 20 Ne) of Tencel and jute (90:10, 80:20, and 70:30) were developed by ring spinning to weave fabric in two weave designs (Plain & Twill). These developed fabrics were assessed for mechanical, comfort, and hand properties. The results revealed that the blended fabric with a high content of Tencel is good in terms of mechanical, comfort, and hand properties, except for stiffness, pilling resistance, resilience, and drapeability. Additionally, fabric woven with a fine yarn count is also good in the above-stated properties, except for stiffness, resilience, and wrinkle recovery. However, fabrics woven with a twill weave design have good comfort and hand properties, except for smoothness and drapability. On the other hand, fabric with a plain weave design is good in terms of mechanical properties, except for tear strength. The comparison of TJ blended fabric with PC blended fabric shows that the tensile strength, air permeability and OMMC of JT blended fabric is 8.31%, 96%, and 29.46% higher than PC blended fabric but tear strength is 99% less. Furthermore, statistical analysis was performed to check the effect of the input variables on the response factors, and it was found that the effect of yarn count on all output responses is statistically the most significant.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3