Experimental investigation of non-premixed and partially premixed methane lifted flames established on a lobed swirl injector

Author:

Jiang Lei1234,Li Gang235ORCID,Jiang Xi6,Hu Hongbin1234,Xiao Bo1234,Xu Yanji1234,Lei Zhijun235

Affiliation:

1. Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China

3. Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Sciences, Beijing, China

4. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

5. Key Laboratory of Light Duty Gas Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

6. School of Engineering and Materials Science, Queen Mary University of London, London, UK

Abstract

A lobed swirl injector was tested to examine its potential in combustion control for non-premixed and partially premixed flames. It was found in the experiment that the flame derived from the injector changed between attached and detached flames at different conditions, demonstrating a promising way to control combustion. When air is supplied through the external channel of the lobed swirl injector and fuel passes through the internal channel, a stable lifted flame that is partially premixed was established above the injector exit. With the increase of airflow rate, the flame lift-off height decreases gradually until it is reattached to the injector, forming a diffusion flame. When increasing the fuel flow rate, the lift-off height increases gradually until the flame is blown out. Flow fields of the partially premixed lifted flames were investigated using stereoscopic particle image velocimetry. Streamlines located in the near field of the injector exit do not expand but bend inward, which is quite different from the expansion motion at the exit of the traditional vane swirler. The trough structure on the lobed swirler leads to the outer air flowing inward. Although the crest structure should make the inside gas flow outward, the strong entrainment of the surrounding air would restrain the radial outward motion of the inner gas, thus causing a contracted motion. After the streamline develops to an axial position further away from the injector exit, the swirling jet begins to expand under effects of both the centrifugal force and the development of shear layer to form turbulence. This flow pattern affects both the flame stabilization position and the neighboring reaction zone structure significantly. The measurements also show that the lobed swirl injector is very capable of entraining the ambient air that is sucked into the mainstream from the downward direction.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3