Multi-condition optimization of a cross-flow fan based on the maximum entropy method

Author:

Yanyan Ding1ORCID,Wang Jun1,Wang Wei1,Jiang Boyan1ORCID,Xiao Qianhao1ORCID,Ye Tao2

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Huazhong, China

2. Guangdong Sunwill Precising Plastic Company, Guangdong, China

Abstract

Cross-flow fans are widely used in heating, wind-curtains, and air-conditionings, as well as other ventilation systems. A single or double arc is generally used as the camber line of cross-flow fans, but this design leads to constraints in the geometry of the blade profiles. In this study, the camber line of a cross-flow fan blade was parameterized by five parameters based on the fourth-order Bezier curve. A two-dimensional computational fluid dynamics (CFD) simulation was conducted to predict the aerodynamic characteristics and the internal flow field. It is necessary in multi-condition optimization, to evaluate the relative importance of the performance parameters under different working conditions and determine their weight factors. Here, a novel maximum entropy method (MEM) was proposed to quantify of volume flow rate, because the method avoids the subjectivity in the selection of the weights. Subsequently, a multi-island genetic algorithm (MIGA), combined with numerical simulation, was used to search the global optimum in the given design space. The results indicated that the optimum combination of the structural parameters reduced the blade channel vortex in a particular location of the impeller and changed the position and size of the eccentric vortex. The volume flow rate of the optimized impeller was 4.28% higher at the minimum rotation speeds and 12.87% higher at the maximum rotation speeds.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3