Multi-fault diagnosis method for wind power generation system based on recurrent neural network

Author:

Wang Junnian12ORCID,Dou Yao13,Wang Zhenheng13,Jiang Dan13

Affiliation:

1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China

2. School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China

3. Knowledge Processing and Networked Manufacturing Key Laboratory in Universities of Hunan Province, Xiangtan, China

Abstract

With the continuous expansion of the scale of wind turbine system, wind power production, operation and equipment control of wind turbine have become more and more significant. To improve the reliability of wind turbine systems fault diagnosis, combining with data-driven technology, this paper proposes a multi-fault diagnosis method for wind power system based on recurrent neural network. According to the actual wind speed data, the normal operation and fault data of the wind turbine system are obtained by system modeling, and the classification and prediction model based on the recurrent neural network algorithm is established, which takes 30 characteristic parameters such as wind speed, rotor speed, generator speed and power generation as input, and 10 different types faults labels of the wind turbine as output. Specific rules formed inside the sample data of the wind turbine system are learned intelligently by the model which is continuously trained, optimized and tested to verify the feasibility of the algorithm. The results of evaluation standards such as accuracy rate, missed detection rate and F1-measure that compared with other related algorithms such as deep belief network show that the proposed algorithm can solve the problem of multi-classification fault diagnosis for wind power generation system efficiently.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3