Realising transition pathways for a more electric, low-carbon energy system in the United Kingdom: Challenges, insights and opportunities

Author:

Chilvers Jason1,Foxon Timothy J2,Galloway Stuart3,Hammond Geoffrey P4,Infield David3,Leach Matthew5,Pearson Peter JG6,Strachan Neil7,Strbac Goran8,Thomson Murray9

Affiliation:

1. Science, Society and Sustainability (3S) Research Group, School of Environmental Sciences, University of East Anglia, Norwich, UK

2. SPRU – Science Policy Research Unit, University of Sussex, Brighton, UK

3. Department of Electrical and Electronic Engineering, University of Strathclyde, Glasgow, UK

4. Department of Mechanical Engineering and Institute for Sustainable Energy and the Environment (I-SEE), University of Bath, Bath, UK

5. Centre for Environmental Strategy, University of Surrey, Surrey, UK

6. Centre for Environmental Policy, Imperial College London, South Kensington Campus, London, UK

7. UCL Energy Institute, The Bartlett School of Environment, Energy and Resources, University College London, London, UK

8. Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK

9. Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Leicestershire, UK

Abstract

The United Kingdom has placed itself on a transition towards a low-carbon economy and society, through the imposition of a legally-binding goal aimed at reducing its ‘greenhouse gas’ emissions by 80% by 2050 against a 1990 baseline. A set of three low-carbon, socio-technical transition pathways were developed and analysed via an innovative collaboration between engineers, social scientists and policy analysts. The pathways focus on the power sector, including the potential for increasing use of low-carbon electricity for heating and transport, within the context of critical European Union developments and policies. Their development started from narrative storylines regarding different governance framings, drawing on interviews and workshops with stakeholders and analysis of historical analogies. The quantified UK pathways were named Market Rules, Central Co-ordination and Thousand Flowers; each reflecting a dominant logic of governance arrangements. The aim of the present contribution was to use these pathways to explore what is needed to realise a transition that successfully addresses the so-called energy policy ‘ trilemma,’ i.e. the simultaneous delivery of low carbon, secure and affordable energy services. Analytical tools were developed and applied to assess the technical feasibility, social acceptability, and environmental and economic impacts of the pathways. Technological and behavioural developments were examined, alongside appropriate governance structures and regulations for these low-carbon transition pathways, as well as the roles of key energy system ‘actors’ (both large and small). An assessment of the part that could possibly be played by future demand side response was also undertaken in order to understand the factors that drive energy demand and energy-using behaviour, and reflecting growing interest in demand side response for balancing a system with high proportions of renewable generation. A set of interacting and complementary engineering and techno-economic models or tools were then employed to analyse electricity network infrastructure investment and operational decisions to assist market design and option evaluation. This provided a basis for integrating the analysis within a whole systems framework of electricity system development, together with the evaluation of future economic benefits, costs and uncertainties. Finally, the energy and environmental performance of the different energy mixes were appraised on a ‘life-cycle’ basis to determine the greenhouse gas emissions and other ecological or health burdens associated with each of the three transition pathways. Here, the challenges, insights and opportunities that have been identified over the transition towards a low-carbon future in the United Kingdom are described with the purpose of providing a valuable evidence base for developers, policy makers and other stakeholders.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3