Thermo-hydraulic performance augmentation in residential heating applications using a novel multi-fluid heat exchanger with helical coil tube insertion

Author:

Almasri Belal1,Mishra Sudhansu S2ORCID,Mohapatra Taraprasad1ORCID

Affiliation:

1. Department of Mechanical Engineering, C. V. Raman Global University, Bhubaneswar, India

2. Department of Mechanical Engineering, Government College of Engineering, Keonjhar, India

Abstract

This study proposes a heat transfer augmentation technique using a brazed helix tube (BHT) fabricated from a helical tube with precision brazing between coil turns in a novel multi-fluid heat exchanger (NMFHE) for simultaneous heating of water and air using solar energy. The thermo-hydraulic performance of the present NMFHE for residential heating of water (CW) and air (CA) using hot water (HW) is tested experimentally. Nusselt number and friction factor for fluid flow inside the NMFHE are calculated as the thermo-hydraulic measure relating to variations in flow rate, inlet temperature, and flow configuration. Optimal flow parameters for overall optimized performances that is, maximum heat transfer and minimum pressure drop in NMFHE are determined using the Taguchi Grey relational approach. NMFHE performs efficiently in the Counterflow (cold water reverse) flow configuration with HW flow rate of 100 LPH, CW flow rate of 200 LPH, and HW inlet temperature of 70°C. The CW flow rate has the greatest impact on both the Nusselt number and friction factor, with a contribution of 82.37% and 93.42%, respectively. A confirmation test has been conducted to validate the findings, revealing a significant performance improvement of 32.19% when using the Grey relational grade model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3