Fault diagnosis of wind turbine based on multi-signal CNN-GRU model

Author:

Chen Yang1ORCID,Zheng Xiaoxia1

Affiliation:

1. Shanghai University of Electric Power, Shanghai, China

Abstract

Deep Learning has been widely used in the monitoring and diagnosis of wind turbines. However, most of the current fault diagnosis methods only use single sensor signal as the input of DL model, which leads to the limitation of the model performance. Therefore, this paper proposes a multi-signal CNN-GRU model. Firstly, the acquired multiple sensor signals are converted to time–frequency images by Multi-Synchrosqueezing S-Transform, the frequency domain features of multiple sensors are extracted by Convolutional Neural Network and fused by Attention Mechanism, then the multi-source time-frequency features are extracted by Gated Recurrent Unit and finally classified by SoftMax. Experiments are conducted on the CWRU dataset and the field gearbox dataset. The results show that the proposed method achieves an average accuracy of 99.69% and 100% on the two datasets, which are both higher than existing DL-based fault diagnosis methods. The proposed method can effectively fuse signals from multiple sensors, thus improving the classification accuracy and stability of the model, which has high practicality and reliability for fault diagnosis of wind turbines.

Funder

äÂ,ŠæÂμ·åÂ,Â,ç”Âμ站è‡Â动化技术重çÂ,Â实éŒ室

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3