Vortex development induced by part gap geometry and endwall configurations for variable stator vanes in a compressor cascade

Author:

Gottschall M1,Vogeler K1

Affiliation:

1. Institute of Fluid Mechanics, Technische Universität Dresden, Dresden, Germany

Abstract

The article describes investigations on the three-dimensional (3D) flowfield development near the endwall of a linear compressor cascade which is caused by specific part gap and endwall concepts of adjustable stator vanes. Their beneficial or harmful characteristics, previously measured with outlet loss and flow turning distributions, are investigated inside the passage at different stagger angles to analyse the origin and the interaction of the geometry-induced vortex system. Qualitative blade-to-blade measurements were conducted with particle image velocimetry in several spanwise positions as well as oil flow visualisation on the blade surfaces and the endwall. Improved three-dimensional (3D) numerical Reynolds-averaged Navier–Stokes (RANS) calculations with Reynolds-stress turbulence models were carried out and enhance the experimental findings. Results indicate extensive interactions between secondary flow and leakage flow through a penny gap depending on the aerodynamic loading. The part clearance vortex development and its impact to the blade boundary layers downstream the passage is visualised and enhances the understanding of the geometry effect. Also, the impact of the endwall concepts without radial clearances to the endwall boundary layer is shown and explains their beneficial characteristics compared to a reference geometry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3