A numerical study on the internal heat leak mechanisms in a variable property three-stream heat exchanger

Author:

Shafiei-alamooti Yasser1ORCID,Ashrafizadeh Ali1

Affiliation:

1. K. N. Toosi University of Technology, Faculty of Mechanical Engineering, DOS Computational Research Lab, Tehran, IR Iran

Abstract

Heat leakage mechanisms need to be addressed in the thermal analysis of multi-stream heat exchangers due to their effects on the intended heat transfer between the streams. In this paper, multi-dimensional heat transfers between various fluid streams and also between the fluid and solid parts of a three-stream plate-fin heat exchanger is numerically modeled considering the variation of thermo-physical properties of both solid and fluid parts. All internal heat leak mechanisms, i.e. longitudinal heat conduction, transverse bypass through fins, and heat transfer reversal in a stream are taken into consideration. The distribution of longitudinal heat conduction along the stream’s separating plates (plates) is also explored. It is shown that the longitudinal heat conduction depends strongly on the variation of properties in some flow arrangements. For such cases, the plates experience areas with relatively low temperature, and a new longitudinal heat conduction, mainly induced by property variation, is identified and presented. This induced longitudinal conduction is close to 1% of the maximum heat exchange between the streams in this study. Another interesting result is that the longitudinal temperature distribution in the plates does not necessarily follow the temperature distribution along the nearby streams due to the entrance effects and unbalanced heat capacity rates. Numerical results show that property variations affect all of the thermal leakage phenomena and, therefore, need to be considered in the modeling and thermal analysis of multi-stream heat exchangers.

Funder

National Iranian Gas Company

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3