Effects of the number of blades on impeller-volute interaction and flow instability of a centrifugal pump

Author:

Shim Hyeon-Seok1,Kim Kwang-Yong2ORCID

Affiliation:

1. Aerospace Technology Research Institute, Agency for Defense Development, Daejeon, South Korea

2. Department of Mechanical Engineering, Inha University, Incheon, South Korea

Abstract

Effects of the number of blades on the impeller-volute interaction and flow instability were studied for a centrifugal pump. The hydraulic performance and time-dependent flow field were analyzed by using the unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with the k-ω based shear stress transport turbulence model. The grid dependence and temporal resolution were tested to evaluate the numerical uncertainties, and the numerical results were validated using experimental data. As the performance parameters, the stage total-to-static head coefficient, the impeller total-to-static head coefficient, and the volute static pressure recovery coefficient were selected to classify the cause of the impeller-volute interaction and flow instability observed inside components. Using the fast Fourier transform, fluctuations of the performance parameters were divided into three categories: the blade passing frequency and its harmonic frequencies, the fluctuations in the broadband frequency region, and the fluctuations in the low-frequency region. The results showed that the fluctuations of the performance parameters and local pressure were affected in various ways by the number of blades. The time-dependent flow structure was investigated to study the root causes of the differences in the impeller-volute interaction and flow instability by the number of blades.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3