An Introduction to Nucleoside and Nucleotide Analogues

Author:

Squires Kathleen E1

Affiliation:

1. Department of Medicine/Infectious Diseases, University of Southern California, Los Angeles, Calif., USA

Abstract

The introduction of newer and more potent agents has diverted attention away from the importance of nucleoside analogue reverse transcriptase inhibitors (NRTIs) in modern antiretroviral drug regimens. As a class, these proviral chain terminators lack the virological potency of either non-nucleoside reverse transcriptase inhibitor (NNRTI) or protease inhibitor (PI) drugs, due largely to their competitive mode of inhibition and requirement for metabolic activation. However, neither NNRTIs nor PIs alone can maintain the complete suppression of HIV replication required for extended therapy, and both suffer from serious class cross-resistance on therapeutic failure. Thus, the NRTIs will remain essential components of highly active antiretroviral therapy (HAART) for the foreseeable future, both for their contribution to a regimen's virological potency and the subsequent preservation of the more potent drug classes used with them. However, it has become apparent in recent years that the current NRTIs exhibit duration-dependent adverse events as a class, which may limit the length of time for which they can be safely used. An independent contribution to peripheral fat wasting in lipodystrophy syndrome has been established for the use of NRTI drugs. Of greater clinical concern is their established association with potentially fatal lactic acidaemia and hepatic steatosis. Both these class events, as well as several individual drug events, such as peripheral neuropathy, can be linked to progressive mitochondrial destruction with a greater or lesser degree of confidence. Mitochondrial toxicity, due in large part to the high affinity of several NRTI agents for uptake by mitochondrial DNA polymerase γ, has been demonstrated both in vitro and in vivo. New chain-terminating agents are urgently needed that address issues of improved virological potency, greater efficacy in NRTI-experienced individuals, and greater long-term safety. The nucleotide class of reverse transcriptase inhibitor (NtRTI), currently under clinical development, addresses improved potency by abbreviating the intracellular activation pathway to allow a more rapid and complete conversion to the active agent. These nucleoside monophosphate analogues are taken as masked prodrugs bearing labile lipophilic groups to facilitate penetration of target cell membranes. Subsequent unmasking by endogenous chemolytic enzymes releases a partially activated nucleoside analogue metabolite. The NtRTI furthest along the developmental process is tenofovir disoproxil fumarate (TDF), an orally available acyclic adenine phosphonate analogue, currently in Phase III clinical trials. This agent has shown high potency and an unusually durable response in trials of single-agent therapy intensification in highly treatment-experienced individuals, and its active metabolite, tenofovir diphosphate, exhibits a long intracellular half-life in both resting and activated peripheral blood mononuclear cells that permits once daily dosing. Tenofovir diphosphate also exhibits a very low affinity for DNA polymerase γ in vitro, suggesting a low degree of in vivo mitochondrial toxicity may be observed on long-term follow-up, although clinical data to support this inference are not yet available. The introduction of TDF and other NtRTIs as ‘second-generation’ nucleoside analogues carefully evaluated for potential long-term toxicity, can be expected to significantly improve the therapeutic options for both those currently on HAART and those yet to begin.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3