Methodology to characterize urban areas with similar daily electricity load curves using smart meters and census information (Montevideo-Uruguay)

Author:

Chévez Pedro1ORCID,Barbero Dante1ORCID

Affiliation:

1. Instituto de Investigaciones y Políticas del Ambiente Construido – IIPAC (Built Environment Research and Policy Institute), Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET (National Council of Scientific and Technical Research), Universidad Nacional de La Plata – UNLP (National University of La Plata), Faculty of Architecture and Urbanism, La Plata, Argentina

Abstract

Given the massive deployment of smart meters at international level, it is necessary to develop methodologies to extract knowledge from the data that they can provide. To this end, it is necessary to associate energy, socio-demographic and/or technical-constructive data, because this is the only way to identify profiles with their corresponding relevant variables or drivers. The usual problem is that socio-technical information about users is limited or non-existent, as it is costly to collect. Consequently, this work presents as a novelty the use of census information to characterize groups of urban segments with similar daily electricity load curves, which avoids the need to collect socio-technical information through specific surveys or direct measurements. In this way, relevant variables are identified in the determination of consumption patterns in the study case (Montevideo-Uruguay) and they are used to infer the daily behavior of those sectors of the city that don’t have this information.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Fondo para la Investigación Científica y Tecnológica

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference28 articles.

1. ReportLinker. Global Smart Meters Market. Growth, Trends, Forecasts (2020–2025). Report, Reportlinker, 2020.

2. Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data

3. A novel cluster-specific analysis framework for demand-side management and net metering using smart meter data

4. Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data

5. MIEM. Balance Energético Nacional. Uruguay. Ministerio de Industria, Energía y Minería, 2023. https://ben.miem.gub.uy/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Data Augmentation-Based Household Profile Identification Approach Under Semi-supervised and Federated Learning Framework;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3