Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review

Author:

Obileke KeChrist12ORCID,Nwokolo Nwabunwanne12,Makaka Golden2,Mukumba Patrick2,Onyeaka Helen3

Affiliation:

1. Fort Hare Institute of Technology, University of Fort Hare, Alice, South Africa

2. Departments of Physics, University of Fort Hare, Alice, South Africa

3. School of Chemical Engineering, University of Birmingham, Birmingham, UK

Abstract

The authors reviewed the future prospects and previous studies on anaerobic digestion technology for biogas production and highlight the solutions to problems relating to construction and maintenance of biogas digesters, which can now be accessed in a single paper. It is the aim of the review to provide insight into the use, process and application of anaerobic digestion as an appropriate technology for biogas production from peer reviewed literature. Recent studies have shown that the microbial communities and metabolic pathways involves in anaerobic digestion are influenced by temperature. Their metabolic activities increase significantly with increase in temperature. Therefore, the findings of the review reveal that temperature is a major parameter for biogas production due to its influence on metabolic activities involved in anaerobic digestion. Hence, there is the need for insulation as well as external heating to maintain temperature stability and to avoid temperature fluctuations. More also, the anaerobic digestion technology for production of biogas is a viable option that can supplement as well as reduce the usage of non-renewable energy sources such as fossil fuel. The detailed information addressed in this study would increase biogas energy mix as well as mitigating climate change. Therefore, the study recommends the use of biogas as a clean energy for the purpose of power generation, cooking and heating.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3