Two Equivalent Discrepancy Functions for Maximum Likelihood Estimation: Do Their Test Statistics Follow a Non-Central Chi-Square Distribution under Model Misspecification?

Author:

Olsson Ulf Henning,Foss Tron1,Breivik Einar2

Affiliation:

1. Norwegian School of Management BI

2. Norwegian School of Economics and Business Administration

Abstract

Over the years several discrepancy functions have been introduced both in the literature and in the software of Structural Equation Modeling (SEM). The test statistics for the discrepancy functions associated with Maximum Likelihood (ML), Generalized Least Squares (GLS), and Normal Theory Weighted Least Squares (NWLS) are all asymptotically equivalent. These test statistics are all approximately distributed as central chi-square under correct model specification and if the observed variables are multivariate normally distributed. However, it is known that the distribution of these test statistics will not approximate a central Chi-square distribution for models containing specification error, but is more likely to follow a non-central Chi-square distribution (Browne 1984). This study investigates the empirical distributions of the ML and NWLS discrepancy functions. The study includes 13 different factor models with different types and degrees of specification error. It is found, except for small samples, that the empirical distribution of the ML-test statistic outperforms the empirical distribution of the NWLS-test statistic in terms of approximation to the theoretical non-central Chi-square distribution. Furthermore, in some cases, it turned out that the non-central Chi-square approximation was not appropriate even for models that contained minor and moderate degrees of specification error.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3