Affiliation:
1. Department of Philosophy, University of Bergen, Norway
2. ConsultAG, Switzerland
Abstract
Consistency and coverage are two core parameters of model fit used by configurational comparative methods (CCMs) of causal inference. Among causal models that perform equally well in other respects (e.g., robustness or compliance with background theories), those with higher consistency and coverage are typically considered preferable. Finding the optimally obtainable consistency and coverage scores for data [Formula: see text], so far, is a matter of repeatedly applying CCMs to [Formula: see text] while varying threshold settings. This article introduces a procedure called ConCovOpt that calculates, prior to actual CCM analyses, the consistency and coverage scores that can optimally be obtained by models inferred from [Formula: see text]. Moreover, we show how models reaching optimal scores can be methodically built in case of crisp-set and multi-value data. ConCovOpt is a tool, not for blindly maximizing model fit, but for rendering transparent the space of viable models at optimal fit scores in order to facilitate informed model selection—which, as we demonstrate by various data examples, may have substantive modeling implications.
Funder
Bergens Forskningsstiftelse
Subject
Sociology and Political Science,Social Sciences (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献