Prediction of vitreomacular traction syndrome outcomes with deep learning: A pilot study

Author:

Usmani Eiman12ORCID,Bacchi Stephen2,Zhang Hao3,Guymer Chelsea12,Kraczkowska Amber1,Qinfeng Shi Javen4,Gilhotra Jagjit12,Chan Weng Onn12ORCID

Affiliation:

1. Discipline of Ophthalmology and Visual Science, University of Adelaide, Adelaide, Australia

2. Department of Ophthalmology, Royal Adelaide Hospital and South Australian Institute of Ophthalmology, Adelaide, Australia

3. AMI Fusion Technology, University of Adelaide, Adelaide, Australia

4. Institute of Machine Learning, University of Adelaide, Adelaide, Australia

Abstract

Purpose To investigate the potential of an Optical Coherence Tomography (OCT) based Deep-Learning (DL) model in the prediction of Vitreomacular Traction (VMT) syndrome outcomes. Design A single-centre retrospective review. Methods Records of consecutive adult patients attending the Royal Adelaide Hospital vitreoretinal clinic with evidence of spontaneous VMT were reviewed from January 2019 until May 2022. All patients with evidence of causes of cystoid macular oedema or secondary causes of VMT were excluded. OCT scans and outcome data obtained from patient records was used to train, test and then validate the models. Results For the deep learning model, ninety-five patient files were identified from the OCT (SPECTRALIS system; Heidelberg Engineering, Heidelberg, Germany) records. 25% of the patients spontaneously improved, 48% remained stable and 27% had progression of their disease, approximately. The final longitudinal model was able to predict ‘improved’ or ‘stable’ disease with a positive predictive value of 0.72 and 0.79, respectively. The accuracy of the model was greater than 50%. Conclusions Deep-learning models may be utilised in real-world settings to predict outcomes of VMT. This approach requires further investigation as it may improve patient outcomes by aiding ophthalmologists in cross-checking management decisions and reduce the need for unnecessary interventions or delays.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3