High-performance all-aromatic liquid crystalline esteramide-based thermosets

Author:

Dai Yiheng1,Bi Xiangyu1,Dingemans Theo J23,Guan Qingbao12ORCID

Affiliation:

1. State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China

2. Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

3. Current address: Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract

We have synthesized and characterized a new family of nematic all-aromatic polyesteramide thermosets based on 6-hydroxy-2-naphthoic acid (HNA), terephthalic acid (TA), and 4-acetamidophenol (AAP). In order to incorporate a high concentration of the amide-based monomer (AAP), the melt transition ( T K-N) and melt viscosity had to be lowered in order to maintain melt processable intermediates. Precursor thermoplastic reactive oligomers, end-capped with phenylethynyl functionalities, were prepared using standard melt condensation techniques with a target M n of 1000–9000 g mol−1. The reactive oligomers with 20–30 mol% AAP could easily be processed into films, and the films exhibit good tensile properties in terms of tensile strength (70–80 MPa) and elongation at break (7–10%). A glass transition of 191°C could be obtained when a 1000 g mol−1 oligomer (HNA/TA/AAP(20)–1 K) was thermally cross-linked. When the AAP concentration reaches 35 mol%, the rigidity of the backbone and the hydrogen bonding interactions are enhanced, which make HNA/TA/AAP(35) polymers difficult to process.

Funder

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3