Improving the thermal and mechanical properties of phenolic fiber over boron modified high-ortho phenolic resin

Author:

Ren Yu123ORCID,Lin Xu123,Shi Zhengjun23,Zheng Yunwu23,Liu Jianxiang2,Zheng Zhifeng4,Liu Can123ORCID

Affiliation:

1. Yunnan Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, Yunnan, People’s Republic of China

2. Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan, People’s Republic of China

3. College of Materials Science and Engineering, Southwest Forestry University, Kunming, Yunnan, People’s Republic of China

4. College of Energy, Xiamen University, Xiamen, People’s Republic of China

Abstract

Boron-modified high-ortho phenolic resins (BPRs) were prepared under normal pressure by using phenol and formaldehyde as raw materials, zinc acetate, and oxalic acid as catalysts, and boric acid as a modifier. Boron-modified phenolic fibers (BPFs) were prepared by melt spinning and curing in a mixture of formaldehyde and hydrochloric acid, followed by a heat treatment under high temperature. The structure, ortho–para ratio (O/P), molecular weight and distribution, spinnability, thermal stability, fiber strength, and morphology of the resins were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and fiber strength testing. The results showed that the addition of boric acid reduced the ortho reaction of the synthetic resin and the O/P value of phenolic resin. When the content of boric acid was 3 wt%, the thermal stability was the best, the O/P value was up to 3.26, and the weight average molecular weight (Mw) was 18745 g/mol. In Compared with the unmodified resin, the mass loss was increased by 33.7%, and finally the carbon yield was 51.2%. The tensile strength of the fibers reached 187.2 MPa and the elongation at break was 10.5%. By introducing boron into the molecular chain, the structure of the resin was improved, and the thermal stability and mechanical properties of the fibers were improved.

Funder

national key research and development program of china

Applied Basic Research Programs of Science and Technology Department of Yunnan Province

southwest forestry university

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3