Thermal and mechanical properties of cyanate ester resin modified with acid-treated multiwalled carbon nanotubes

Author:

Li Hongfeng12,Gu Jiyou1,Liu Changwei2,Wang Dezhi2,Qu Chunyan2

Affiliation:

1. College of Material Science and Engineering, Northeast Forestry University, Harbin, People’s Republic of China

2. Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin, People’s Republic of China

Abstract

Multiwalled carbon nanotubes (MWCNTs) that were treated with mixed acids were used to reinforce the cyanate ester resin. Meanwhile, the relationship among structure, morphology, and property of the modified resin was investigated. The treated MWCNTs were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS). The XPS results showed that the oxygen content in the treated MWCNTs was higher than that of untreated MWCNTs and the FTIR results indicated the presence of oxygen-containing functional groups on the treated MWCNTs. The microstructure of the resin was characterized by scanning electron microscopy and transmission electron microscopy. The results showed that the dispersion properties of the treated MWCNTs in the resin matrix were improved and compared with the untreated analogue. Addition of MWCNTs to the resin had little effect on the thermodynamic properties of the resin system. Upon addition of 0.8 wt% of MWCNTs to the resin, the glass transition temperature of the cured resin changed from 298°C to 285°C, maintaining a relatively high value. For the resins containing 0.6 wt% of treated MWCNTs, the plane strain critical stress intensity factor and plane strain critical strain energy release rate in the system were determined to be 1.39 Pa·m0.5 and 364 J m−2, respectively, and the fracture toughness is increased by 45.7 and 76.0%, respectively. Furthermore, the modified resin system exhibits excellent toughness and thermal properties. Therefore, the modified resin may be suitable for future applications involving high performance composites and adhesives.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3