Surface modification of GO by PDA for dielectric material with well-suppressed dielectric loss

Author:

Kou Yujia12ORCID,Zhou Wenying12,Xu Li1,Cai Huiwu1,Wang Guangheng1,Liu Xiangrong1,Chen Qingguo2,Dang Zhi-Min13

Affiliation:

1. College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China

2. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, China

3. State Key Laboratory of Power System and Department of Electrical Engineering, Tsinghua University, Beijing, China

Abstract

To suppress the high dielectric loss of graphene oxide (GO)/poly(vinylidene fluoride) (PVDF) while maintaining high dielectric constant (high- k) near the percolation threshold, in this study, GO nanosheets coated with polydopamine (PDA) were integrated into PVDF to investigate the effects of the PDA shell and its concentrations on the dielectric properties of the nanocomposites. The results indicate that the dissipation factor and conductivity of the GO@PDA/PVDF are significantly suppressed to very low values compared with the pristine GO/PVDF composites, attributable to the PDA interlayer between the GO nanosheets which prevents them from direct contact with each other and remarkably reduces the leakage loss. Furthermore, activation energies of the GO/PVDF and GO@PDA/PVDF composites were calculated as 1.247 and 0.884 eV, respectively, indicating that the presence of PDA interlayer reduces the relaxation activation energy and makes the relaxation occur at low temperature for the GO@PDA/PVDF. The prepared GO@PDA/PVDF nanocomposites with high- k but low loss have potential applications in microelectronic engineering.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3