Enhancement in mechanical properties and conductivity of modified epoxy resin composites

Author:

Bi Changlong12,Zhao Dongyu12

Affiliation:

1. Department of Macromolecular Science and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang Province, China

2. Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin, China

Abstract

Nanosilver and nanonickel were first loaded on the surfaces of multiwalled carbon nanotubes (MWCNTs) by liquid-phase reduction method and the multiwalled carbon nanotubes/nanosilver-nickel (MWCNTs/Ag-Ni) composites were formed. The MWCNTs/Ag-Ni were homogeneously dispersed in the epoxy resin (EP), which can form epoxy resin/multiwalled carbon nanotubes/nanosilver-nickel (EP/MWCNTs/Ag-Ni) composites. The results based on X-ray photoelectron spectroscopy show the chemical bonds in the MWCNTs/Ag-Ni. By the scanning electron microscope method, it can be concluded that the enhancement in mechanical properties is due to the strong interaction between MWCNTs and the EP matrix. It is proved that through the comparative tests, the addition of nanosliver-nickel rigid particles can enhance the interaction between MWCNTs and the EP matrix, which can improve the mechanical properties of modified EP. Compared with the pure EP, the tensile strength and impact strength of nanocomposites improve around 81% and 139% by adding 1.3 wt% MWCNTs/Ag-Ni. In addition, the experimental results based on dynamic mechanical analysis (DMA) show that the glass transition temperature of modified EP (1.3 wt% MWCNTs/Ag-Ni in EP matrix) is significantly increased by about 18.6°C. Compared with the pure EP, the conductivity of modified EP (1.3 wt% MWCNTs/Ag-Ni in EP matrix) is also increased by around 63%. Because of the excellent mechanical properties and conductivity of EP/MWCNTs/Ag-Ni nanocomposites, the development of high-performance polymer materials will be greatly achieved.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3