Flexible and color-tunable poly(ether ether ketone) co-coordinated with Eu(III) and Tb(III) fluorescent films: Thermal stability and luminescence property

Author:

Wei Junji12ORCID,Huang Wen1,Song Jiale12,Hui Jizhuang3,Duan Yajun1,Duan Yanan1,Wang Fengyan12,Yan Ni12,Li Shuhan1

Affiliation:

1. Institute of Polymer Materials, School of Materials Science and Engineering, Chang’an University, Xi’an, People’s Republic of China

2. Engineering Research Center of Transportation Materials, Ministry of Education, Chang’an University, Xi’an, People’s Republic of China

3. School of Construction Machinery, Chang’an University, Xi’an, People’s Republic of China

Abstract

In this work, a novel kind of carboxyl-containing poly(ether ether ketone) (PEEK-COOH) was successfully synthesized and carefully characterized. Based on PEEK-COOH as macromolecular ligands, a series of luminescent rare earth polymer complexes (PEEKn-Eux-Tb1-x) were prepared and made into flexible films. The effects of the ratio of carboxyl ligand to rare earth ions on fluorescence intensity of complexes were studied and discussed. When the molar ratio was 6:1, the fluorescence emission intensity reached a maximum. Furthermore, the relative emission intensity of Tb3+ and Eu3+ binary system depended on their ratio and the intensity of fluorescence emission peak exhibited continuous change. Because of this, the color of the prepared fluorescent films could range from bright green to fire red, and each color has high purity. The fluorescence lifetime of complexes ranged from 0.428 to 0.511 ms. Absolute quantum yield of PEEK-Eu0.4-Tb0.6 was 8.4%. Beside this, these fluorescence films exhibited a high thermal stability with 5 wt. % in the range of 240–250°C, and its tensile strength was about 28 MPa. In addition, PEEKn-Eux-Tb1-x films possessed good optical transparency. All the interesting results suggested the potential application of the luminescent rare earth polymer complexes in display devices and photo-electronic devices.

Funder

National College Students Innovation and Entrepreneurship Training Program

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3