Predictive modeling of surface roughness in hard turning with rotary cutting tool based on multiple regression analysis, artificial neural network, and genetic programing methods

Author:

Bien Duong Xuan1ORCID

Affiliation:

1. Le Quy Don Technical University, Hanoi, Vietnam

Abstract

This present paper deals with the results of setting up and evaluating the quality of surface roughness (SR) prediction models through hard turning with self-driven rotary cutting tools for 40X steel shaft with hardness 45HRC. The cutting parameters are considered to establish the SR prediction model include angle tilt of cutting tool axis, depth of cut, feed rate, and cutting speed. The predictive models (PM) are established utilizing Multi-variables Regression Analysis (MRA), Artificial Neural Network (ANN), and Genetic Programming (GP) methods. In this regard, four MRA, four ANN, and three GP structures are considered to select the most suitable model. The criteria to estimate the PM quality include Coefficient of Determination ( R2), Mean Square Error (MSE), and Mean Absolute Percent Error (MAPE). Whereby, two data sets were collected to construct regression models (RM) and to serve verification. That dataset was originated from 63 experiments (Ep) including 54 Ep for establishing PM and 9 extensive experiments (EEp) for testing PM. The prediction criteria of the MRA3 model gave the best results in four MRA models with R2 of 0.99, MSE of 0.042, and MAPE of 8.087%. The ANN1 gives the most reliable assessment criteria in four ANN models and the GP3 model gave the best in three GP models. The results of predicting the SR value between the selected MRA and ANN and GP models will be assessed in detail. Accordingly, the evaluation criteria of the ANN1 model are the best with the smallest MSE (0.032) and MAPE (7.207%). The MRA3 and GP3 have a lower confidence predictive criteria value than the ANN1 model.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3