Dynamic scheduling for dual-objective job shop with machine breakdown by reinforcement learning

Author:

Gan Xuemei1,Zuo Ying2ORCID,Yang Guanci3,Zhang Ansi4,Tao Fei2

Affiliation:

1. School of Mechanical Engineering, Guizhou University, Guiyang, P.R. China

2. School of Automation Science and Electrical Engineering, Beihang University, Beijing, P.R. China

3. Key Laboratory of Advanced Manufacturing Technology, Guizhou University, Guiyang, P.R. China

4. State Key Laboratory of Public Big Data, Guizhou University, Guiyang, P.R. China

Abstract

In modern complicated and changing manufacturing environments, unforeseen dynamic events such as machine breakdown or unexpected job arrival make required production resources unpredictable. The scheduling scheme is desired to maintain high stability in dynamic manufacturing environments. To cope with the classic disturbance of machine breakdown, a robust pro-active scheduling scheme is proposed by inserting the repair time into a disjunctive graph for reinforcement learning (IRDRL) in this paper. Firstly, a new mathematical model is developed to predict the machine fault which is assumed to be determined by service time and bearing load. Secondly, a disjunctive graph with breakdown information is designed to express the dynamic scheduling status. Then, an online scheduling framework is built based on the well-trained model through the proximal policy optimization (PPO) algorithm. Finally, compared with the classical methods such as the right-shift strategy and static model of reinforcement learning (RL), the proposed robust pro-active scheduling scheme is verified with high robustness, stability, and short running time.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-stage learning scatter search algorithm for the distributed hybrid flow shop scheduling problem with machine breakdown;Expert Systems with Applications;2025-01

2. Dynamic flexible job shop scheduling based on deep reinforcement learning;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-09-11

3. Exploring the evolution of machine scheduling through a computational approach;Engineering Applications of Artificial Intelligence;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3