Hedging-point control policy for a failure-prone manufacturing system

Author:

Yan Hong-Sen1,Jiang Tian-Hua1,Meng Xian-Gang12,Shi Wen-Wu1

Affiliation:

1. Ministry of Education, Key Laboratory of Measurement and Control of Complex Systems of Engineering, and School of Automation, Southeast University, Nanjing, China

2. School of Automation, Tianjin University of Technology, Tianjin, China

Abstract

The production control of failure-prone manufacturing systems is notoriously difficult because such systems are uncertain and non-linear. Since the introduction of hedging-point policies, many researches have been done in this field. However, there are few literatures that consider the production control problem of tree-structured manufacturing systems. In this article, a hedging-point production control policy is proposed for a multi-machine, tree-structured failure-prone manufacturing system. To obtain the optimal hedging points, an iterative learning algorithm is developed by considering the system’s characteristics. A simulation method is embedded in the iterative learning algorithm to calculate the system cost. To estimate the performance of the proposed algorithm, comparisons are made between our algorithm, genetic algorithm and particle swarm optimization algorithm. The experimental results show that our algorithm works better than others in reducing the computation time and minimizing the production cost.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3