Predictive modelling of cutting forces in end milling of titanium alloy Ti6Al4V

Author:

Chen Yun12,Li Huaizhong12,Wang Jun2

Affiliation:

1. Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia

2. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, Australia

Abstract

A cutting force model, based on a predictive model for orthogonal cutting, is developed for force predictions in end milling of titanium alloy Ti6Al4V. The model assumes a semi-stationary process for the serrated chip formation. The Johnson–Cook material model that couples strain hardening, strain rate sensitivity and thermal softening effects is applied to represent the material strength. A thermal model considering the tool thermal properties is integrated to account for the high temperature rise due to the low thermal conductivity of Ti6Al4V. To extend the predictive model to milling, the end mill is discretised into several axial slices, and an equivalent cutting edge is used to include the end cutting edge effect caused by the first axial slice. The model is assessed by comparing its prediction with the experimental results and a mechanistic model for verification. The results show that the proposed model outperforms the mechanistic model with higher accuracy in force prediction.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Literature Review on Prediction Methods for Forced Responses and Associated Surface Form/Location Errors in Milling;Journal of Vibration Engineering & Technologies;2023-12-18

2. Upgraded closed-form cutting force models for general-helix cylindrical milling tools with application to cutting power and energy demand modeling;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-06-25

3. Predicting cutting forces in 5-axis milling of sculptured surfaces directly from a CAM tool path;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-06-15

4. Milling force modelling with high-pressure cooling strategy: An integrated analytical approach;Materials Today: Proceedings;2023-06

5. Closed-form models for the cutting forces of general-helix cylindrical milling tools;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3