Assembly feature construction method of equipment mesh model for digital twin workshops

Author:

Luo Ruiping12,Sheng Buyun23ORCID,Song Kun2,Jian Yuchao2,Fu Gaocai2ORCID,Zhao Feiyu4

Affiliation:

1. School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi, P.R. China

2. School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan, P.R. China

3. School of Mechanical Engineering, Hubei University of Technology, Wuhan, P.R. China

4. School of Computer Science, South-Central Minzu University, Wuhan, P.R. China

Abstract

The digital twin workshop is the basic unit for realizing smart manufacturing. Its model is the prerequisite for applying digital twins in workshops. Geometric model assembly is the primary concern in workshop-level digital twin modeling. However, current research lacks sufficient focus on the efficiency and application modes of equipment mesh model assembly features in geometric model assembly, hindering the construction of the workshop-level digital twin model. The equipment-level digital twin model typically only contains assembly information between individual parts and is generally represented by polygonal meshes; the lack of assembly information between equipment models impedes the assembly of the workshop-level digital twin model. To improve the efficiency of workshop-level digital twin modeling and the reusability of the original 3D assembly information, this paper proposes an assembly feature construction method of equipment mesh model for digital twin workshops. A 3D assembly information model is constructed to describe the information related to the equipment geometric model and the assembly features. Then, the assembly features of the equipment mesh model are gradually positioned preliminarily and precisely, achieving precise mapping of the assembly features in the 3D information model to the equipment mesh model and efficient construction of equipment mesh model assembly features. Finally, with the construction and application of equipment mesh model assembly features in an arc welding workshop and storage workshop as an example, the feasibility of the method in improving the modeling efficiency is verified through relevant comparative experiments.

Funder

Hubei Science and Technology Major Projects

National Natural Science Foundation, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3