Affiliation:
1. School of Mechanical Engineering, Southeast University, Nanjing, China
2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
Abstract
Nowadays, assembly tolerance analysis has become a challenging problem to predict the accuracy of a final assembly and examine whether specified tolerances satisfy assembly functional requirements (AFRs) for ensuring product assembly performance. Skin model shapes can be addressed to represent part geometric tolerances with manufacturing defects, thereby providing high fidelity surfaces that can replace nominal or ideal surfaces and significantly improve the accuracy and reliability of assembly tolerance analysis. However, their application in easy-to-use assembly simulation is limited by the level of detail required for manufacturing defect simulation and the complicated calculation process for integrating these defects into the tolerance analysis. Therefore, to overcome these issues in predicting assembly deviations in the early design stage, we propose a generic integrated approach of assembly tolerance analysis based on skin model shapes. First, two methods are introduced for modelling and generating skin model shapes according to different mate types of assembly key features. Second, a calculation method of assembly deviation propagation is developed by the integration of skin model shapes and stream-of-variation theory with accuracy and efficiency guarantees. Besides, a slightly modified relative contact positioning method is presented, based on different surface and progressive contact method, to obtain deterministic contact points and contact positioning errors between key mating joint surfaces. And then, the deviation values of AFRs are calculated, considering the inevitable manufacturing and assembly process errors. Finally, a typical mechanical assembly on assembly tolerance analysis is used as a case study to demonstrate the effectiveness of the proposed approach.
Funder
the Qinglan Project Funding in Jiangsu University of China
the National Key Research and Development Program of China
the Preliminary Research Program of Equipment Development Department of China
fundamental research funds for the central universities
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献