Toward understanding the drilling performance of thermoplastic CF/PEEK and thermoset CF/epoxy composites using special drills

Author:

Du Yu12ORCID,Yang Tao1,Liu Chang1ORCID,Liu Sinan3ORCID

Affiliation:

1. School of Mechanical Engineering, Tiangong University, Tianjin, China

2. Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing, China

3. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin, China

Abstract

Thermoplastic carbon fiber reinforced polyetheretherkrtone (CF/PEEK) and thermoset carbon fiber reinforced epoxy (CF/epoxy) composites are being widely applied in aviation and aerospace fields for their excellent performance. To compare the drilling characteristics of two typical carbon fiber reinforced composites under varying feed speeds, drilling experiments were carried out using three different special drills involving twist, brad, and dagger drills. The drilling performance of CF/epoxy and CF/PEEK composites was analyzed in terms of chip morphology, drilling temperature, thrust force, delamination damage, and surface morphology. The results show that CF/PEEK composites produced continuous chips, so that CF/PEEK composites generated higher drilling temperature and thrust force than that of CF/epoxy composites. CF/epoxy composites showed larger delamination damage and poorer machined surface than CF/PEEK composite due to its poor interlaminar toughness. Burrs produced agglomeration and crimping at the hole edges of the CF/PEEK composites due to PEEK resin is softened by heat, matrix plastic deformation. Brad drill revealed fewer burrs and merely a tearing damage at the exit. Dagger drill showed more burrs. The hole wall damage is minimal for brad drill. The results provide guidance for drilling of high quality thermoset and thermoplastic composites.

Funder

Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology

Tianjin 131 Research Team of Innovative Talents

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3