Geometric accuracy design and error compensation of a one-translational and three-rotational parallel mechanism with articulated traveling plate

Author:

Sun Tao1,Wang Panfeng1,Lian Binbin1,Liu Sida1,Zhai Yapu1

Affiliation:

1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China

Abstract

The demands for advanced and flexible docking equipment are increasing in the fields of aerospace, shipbuilding and construction machinery. Position and orientation accuracy is one of the most important criteria, which would directly affect the docking quality. Taking a novel one-translational and three-rotational docking equipment, referred to as PaQuad parallel mechanism as example, this article proposed an accuracy improvement strategy by geometric accuracy design and error compensation. Drawing mainly on screw theory, geometric error modeling of PaQuad parallel mechanism was first carried out via four independent routes. Joint perturbations and geometric errors were included in each route error twist. Wrenches due to articulated traveling plate were applied to eliminate joint perturbations. Then, geometric accuracy design was implemented at component and substructure levels. The basic principle was to transfer geometric errors into dimensional or geometric tolerance. High-precision machining/assembling techniques were applied to satisfy the tolerance. Finally, error compensation resorting to kinematic calibration was implemented at mechanism level. It can be summarized as identification modeling, measurement planning, and parameter identification and modification. Maximum deviations of PaQuad parallel mechanism before calibration experiment were 0.01 mm, [Formula: see text], [Formula: see text], and [Formula: see text]. And they become 0.01 mm, [Formula: see text], [Formula: see text], and [Formula: see text] after kinematic calibration. Orientation accuracy of PaQuad parallel mechanism has improved one order of magnitude. It proves the effectiveness of accuracy improvement in terms of geometric accuracy design and error compensation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3