Smooth tool path generation for five-axis flank milling using multi-objective programming

Author:

Zheng G1,Bi Q-Z1,Zhu L-M1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China

Abstract

Flank milling provides an efficient way to machine turbo-machinery components. However, the trajectory smoothness is seldom considered in the existing tool positioning strategies. In this paper, the tool trajectory is smoothed with a constraint on the resulting geometric error for five-axis flank milling. Unlike existing methods, this new method simultaneously considers the geometric smoothness and geometric deviation. The geometric smoothness is characterized by the strain energy of the cutter axis trajectory surface ( SA). The geometric deviation is measured by the signed maximal orthogonal distance between the design surface ( SD) and the tool envelope surface ( SE). For finish and semi-finish flank millings, smooth tool path optimizations are then modelled as multi-objective programming (MOP) problems. Given a prescribed geometric tolerance, the MOP problems are reformulated as constrained nonlinear programming (NLP) problems. Based on the Taylor expansions of the strain energy and the signed distance on the differential deformation of SA, the constrained NLP problems are solved efficiently by the sequential quadratic programming (SQP) method. The existence of the optimal solutions is also discussed. The validity of the approach is confirmed by two numerical examples that generate five-axis flank milling tool paths with cylindrical and conical cutters, respectively.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3