Parameter values for lot size and quality level via CAE simulation, statistical method, and mathematical programming

Author:

Jeang Angus1ORCID,Chung Chien-Ping2ORCID

Affiliation:

1. Department of Industrial Engineering and Systems Management, Feng Chia University, Taichung

2. Department of Business Administration, MingDao University, Changhua

Abstract

Because of the stochastic nature of production systems, it is necessary to first build an uncertainty model for subsequent real applications. Moreover, process parameter planning, quality design, and production inventory management are interdependent elements. In this research, a computer simulation model via computer-aided engineering (CAE) was developed to determine the optimal process parameters, lot size, and back order intervals for an integrated process design and inventory management system with simultaneous quality and cost considerations. Based on the estimated process time and costs obtained using CAE, the derived production rate and unit cost were then used for production inventory applications. In consideration of the uncertainty factor, the response surface method (RSM) was employed to analyze the output, namely the total costs incurred in employing the proposed approach, as well as the inputs, which include the cutting parameters, production quantity, and back order intervals. After the RSM was used to obtain the response functions, which represent the output of the collective interests, the mathematical programming (MP) was formulated based on the response functions to determine the optimal process parameters, process quality levels, production order quantities, and back order intervals. The total cost per set time unit was minimized by determining the required quality level, process parameter values, Economic Production Quantity (EPQ), and back order intervals. A cutting example was chosen to demonstrate the proposed approach. Two cases were used for comparison: the Integrated Case (the proposed approach herein) and the Disintegrated Case.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3