Multi-response optimization of the actively driven rotary turning for energy efficiency, carbon emissions, and machining quality

Author:

Nguyen Trung-Thanh1ORCID,Duong Quoc-Dung1,Mia Mozammel2

Affiliation:

1. Department of Manufacturing Technology, Le Quy Don Technical University, Ha Noi, Vietnam

2. Department of Mechanical Engineering, Imperial College London, London, UK

Abstract

Boosting energy efficiency and machining quality are prominent solutions to achieve sustainable production for turning operations. In this work, a machining condition-based optimization has been performed to decrease the total specific energy (SEC), carbon emission (CE), and average roughness (AR) of the actively driven rotary turning (ADRT) process. The processing factors are the tool rotational speed (Tv), depth of cut (a), feed rate (fr), and workpiece speed (Wv). The turning experiments of the mold material labeled SKD11 have been conducted on a CNC lathe. The regression method is employed to develop comprehensive models of the total specific energy, carbon emissions, and average roughness. The entropy approach is then applied to drive out the weight value of each ADRT response. Finally, the non-dominated sorting particle swarm optimization (NSPSO) is utilized to determine the optimal parameters. The findings indicated that the optimal values of the Tv, a, fr, and Wv are 77 m/min, 0.32 mm, 0.25 mm/rev., and 128 m/min, respectively. The SEC, AR, and CE are decreased by 18.07%, 10.46%, and 5.02%, respectively, as compared to the initial approach. Moreover, the developed active rotary turning operation can be considered as an effective technical solution to boost the machining efficiency of hardened steels.

Funder

national foundation for science and technology development

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3